Thermal Performance of Finned Heat Sinks – State of The Art

Saeed A. A. Ibrahim, Mohamed Raafat Shaalan, Mohammad A. Saleh

Abstract


There has been deep interest by research workers in the thermal characteristics of heat sinks as cooling devices in certain engineering systems (e.g. computer microprocessors and motherboards). The main emphasis has been on how to enhance the heat transfer rate from such cooling devices. Finned surfaces were one obvious solution in this case. Vapor chamber heat sinks may also be another solution.This paper gives an over view of up-to-date published research in the area of flat plate type heat sinks provided with fins. Some 40 articles were reviewed and examined, covering various aspects of the subject. Each article was critically evaluated.  Aspects requiring further work and deeper insight were spotted, drawing attention to their importance.  Suggestions for possible means thought to augment the heat transfer rate of heat sinks were postulated.


Keywords


heat sink; finned surface; heat transfer; cooling process; vapor chamber

Full Text:

PDF

References


Abhat, A., and Seban, R. A., 1974, Boiling and Evaporation from Heat Pipe Wicks with Water and Acetone, Journal of Heat Transfer 96 (3) (1974) 331-337.

Abo El-Nasr, A., and El-Haggar, S. M., 1996, Effective Thermal Conductivity of Heat Pipes, Heat and Mass Transfer 32 (1–2) (1996) 97–101.

Bauer, T. H., 1993, General Analytical Approach toward the Thermal Conductivity of Porous Media, International Journal of Heat and Mass Transfer 36 (17) (1993) 4181–4191.

Boukhanouf, R., Haddad, A., North, M.T., and Buffone, C., Experimental investigation of a flat plate heat pipe performance using IR thermal imaging camera, Appl. Therm. Eng. 26 (2006) 2148–2156.

Carbajal, G., Sobhan, C. B., Peterson, G. P., Queheillalt, D. T., and Wadley, H. N. G., A Quasi-3D Analysis of the Thermal Performance of a Flat Heat Pipe, International Journal of Heat and Mass Transfer 50 (2007) 4286-4296.

Chen, Y.S., Chien, K.H., Wang, C.C., Hung, T.C., Ferng, Y.M., and Pei, B.S., Investigations of the thermal spreading effects of rectangular conduction plates and vapor chamber, J. Electron. Pack. 129 (2007) 348–355.

Chen, Y., Zhang, C., Shi, M. Wu, J., and Peterson, G. P., Study on Flow and Heat Transfer Characteristics of Heat Pipe with Axial Omega-shaped Microgrooves, International Journal of Heat and Mass Transfer 52 (3-4) (2008) 636-643.

Davis, T. W., and Garimella, S. V., Thermal Resistance Measurement across a Wick Structure using a Novel Thermosyphon Test Chamber, Experimental Heat Transfer 21 (2008) 143-154

Dhavaleswarapu, H. K., Chamarthy, P., Garimella, S. V., and Murthy, J. Y., Experimental Investigation of Steady Buoyant-thermocapillary Convection near an Evaporating Meniscus, Physics of Fluids 19 (2007) 082103 (1-11).

Do, K. H., Kim, S. J. and Suresh V. Garimella, A Mathematical Model for Analyzing the Thermal Characteristics of a Flat Micro Heat Pipe with a Grooved Wick, International Journal of Heat and Mass Transfer 51(19-20) (2008) 4637- 4650.

Garimella, S. V., and Sobhan, C. B., Recent Advances in the Modeling and Applications of Nonconventional Heat Pipes, Advances in Heat Transfer 35 (2001) 249–308.

Ghajar, M., Darabi, J., and Crews Jr, N., A Hybrid CFD-mathematical Model for Simulation of a MEMS Loop Heat Pipe for Electronics Cooling Applications, Journal of Micromechanics and Microengineering 15 (2005) 313-321.

Go, J.S., Quantitative thermal performance evaluation of a cost-effective vapor chamber heat sink containing a metal-etched microwick structure for advanced microprocessor cooling, Sens. Actuators A 121 (2005) 549–556.

Gupta, A., and Upadhya, G., Optimization of Heat Pipe Wick Structures for Low Wattage Electronics Cooling Applications, Advances in Electronic Packaging 1999, Pacific RIM/ASME International Intersociety Electronics Photonic Packaging Conference, American Society of Mechanical Engineers, New York 26 (1999) 2129–2137.

Hanlon, M. A., and Ma, H. B., Evaporation Heat Transfer in Sintered Porous Media, ASME Journal of Heat Transfer 125 (2003) 644-652.

Hsieh, S.S., Lee, R.Y., Shyu, J.C., and Chen, S.W., Analytical solution of thermal resistance of vapor chamber heat sink with and without pillar, Energy Convers. Manage. 48 (2007) 2708–2717.

Hsieh, S.S., Lee, R.Y., Shyu, J.C., and Chen, S.W., Thermal performance of flat vapor chamber heat spreader, Energy Convers. Manage. 49 (2008) 1774–1784.

Hung-Yi Li, Ming-Hung Chiang, Chih-I Lee and Wen-Jei Yang "Thermal performance of plate-fin vapor chamber heat sinks", International Communications in Heat and Mass Transfer 37 (2010) 731–738

Iverson, B. D., Davis, T. W., Garimella, S. V., North, M. T., and Kang, S. S., Heat and Mass Transport in Heat Pipe Wick Structures, Journal of Thermophysics and Heat Transfer 21 (2) (2007) 392-404.

Kalahasti, S., and Joshi, Y.K., Performance characterization of a novel flat plate micro heat pipe spreader, IEEE Trans. Compon. Packag. Technol. 25 (2002) 554–560.

Khrustalev, D., and Faghri, A., Fluid Flow Effects in Evaporation from Liquid-Vapor Meniscus, ASME Journal of Heat Transfer 118 (1996) 725-730

Kim, S. J., Seo, J. K. and Do, K. H., Analytical and Experimental Investigation on the Operational Characteristics and the Thermal Optimization of a Miniature Heat Pipe with a Grooved Wick Structure, International Journal of Heat and Mass Transfer 46 (2003) 2051-2063.

Koito, Y., Imura, H., Mochizuki, M., Saito, Y., and Torii, S., Theoretical study on heat transfer characteristics of a vapor chamber, Therm. Sci. Eng. 13 (2005) 23–30.

Koito, Y., Imura, H., Mochizuki, M., Saito, Y., and Torii, S., Numerical analysis and experimental verification on thermal fluid phenomena in a vapor chamber, Appl. herm. Eng. 26 (2006) 1669–1676.

Koito, Y., Imura, H., Mochizuki, M., Saito, Y., and Torii, S., Fundamental experiments and numerical analyses on heat transfer characteristics of a vapor chamber (effect of heat source size), JSME Int. J. Series B 49 (2006) 1233–1240.

Koito, Y., Imura, H., Mochizuki, M., Saito, Y. and Torii, S., Numerical Analysis and Experimental Verification on Thermal Fluid Phenomena in a Vapor Chamber, Applied Thermal Engineering 26 (2006) 1669-1676.

Ma, H. B., and Peterson, G. P., Temperature Variation and Heat Transfer in Triangular Grooves with an Evaporating Film, Journal of Thermophysics and Heat Transfer 11 (1997) 90-97.

Morris, S. J. S., Contact Angles for Evaporating Liquids Predicted and Compared with Existing Experiments, Journal of Fluid Mechanics 432 (2001) 1-30.

Morris, S. J. S. The Evaporating Meniscus in a Channel, Journal of Fluid Mechanics 494 (2003) 297-317.

Mwaba, M. G., Huang, X., and Gu, J., Influence of Wick Characteristics on Heat Pipe Performance, International Journal of Energy Research 30 (2006) 489-499.

Ooijen, V., and Hoogendoorn, C. J., Vapor Flow Calculations in a Flat Heat Pipe, AIAA Journal 17 (1979) 1251-1259.

Potash, M., and Wayner, P. C., Evaporation from a 2-Dimensional Extended Meniscus, International Journal of Heat and Mass Transfer, vol. 15(10), pp. 1851- 1863, (1972).

Rice, J., and Faghri, A., Analysis of Screen Wick Heat Pipes, Including Capillary Dry-out Limitations, Journal of Thermophysics and Heat Transfer 21(3) (2007) 475-486.

Sait, H. H., and Ma, H. B., An Experimental Investigation of Thin-film Evaporation, Nanoscale and Microscale Thermophysical Engineering, vol. 13, pp. 218-227, (2009).

Sauciuc, I., Chrysler, G., Mahajan, R., Prasher, R., Spreader in the heat sink base: phase change systems or solid metals, IEEE Trans. Compon. Packag, Technol. 25 (2002) 621–628.

Singh, R., A Akbarzadeh and Mochizuki, M., Effect of Wick Characteristics on the Thermal Performance of the Miniature Loop Heat Pipes, ASME Journal of Heat Transfer 131 (2009) 082601 (1-10).

Tan, B.K., Wong, T.N., and Ooi, K.T., Analytical effective length study of a flat plate heat pipe using point source approach, Appl. Therm. Eng. 25 (2005) 2272–2284.

Tournier, J. M., and El-Genk, M. S., A Heat Pipe Transient Analysis Model, International Journal of Heat and Mass Transfer 37 (1993) 753-762.

Vadakkan, U., Murthy, J. Y., and Garimella, S. V., Transient Analysis of Flat Heat Pipes, Procs. ASME Summer Heat Transfer Conference, July 21-23, Las Vegas, Nevada (2003).

Vadakkan, U., Garimella, S. V., and Murthy, J. Y., Transport in Flat Heat Pipes at High Fluxes from Multiple Discrete Sources, ASME Journal of Heat Transfer 126 (2004) 347-354.

Wang, Y., and Vafai, K., An experimental investigation of the thermal performance of an asymmetrical flat plate heat pipe, Int. J. Heat Mass Transfer 43 (2000) 2657–2668.

Wang, H., Murthy, J. Y., and Garimella, S. V., Transport from a Volatile Meniscus inside an Open Microtube, International Journal of Heat and Mass Transfer 51 (2008) 3007-3017.

Weibel, J. A., Garimella, S. V., and North, M. T., Characterization of Evaporation and Boiling from Sintered Powder Wicks fed by Capillary Action, International Journal of Heat and Mass Transfer 53 (19-20) (2010) 4204-4215.

Xiao, B., and Faghri, A., A Three-dimensional Thermal-fluid Analysis of Flat Heat Pipes, International Journal of Heat and Mass Transfer 51 (2008) 3113-3126.

Xu, X., and Carey, V. P., Film Evaporation from a Micro-grooved Surface An Approximate Heat Transfer Model and its Comparison with Experimental Data, Journal of Thermo physics and Heat Transfer 4 (1990) 512-520.

Zhu, N., and Vafai, K., Analytical Modeling of the Startup Characteristics of Asymmetrical Flat-plate and Disk-shaped Heat Pipes, International Journal of Heat and Mass Transfer 41(17) (1998) 2619-2637.


Refbacks

  • There are currently no refbacks.